- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Dias, Adhitha (2)
-
Kulkarni, Milind (2)
-
Sundararajah, Kirshanthan (2)
-
Anderson, Logan (1)
-
Pelenitsyn, Artem (1)
-
Saumya, Charitha (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
SparseAuto: An Auto-scheduler for Sparse Tensor Computations using Recursive Loop Nest RestructuringAutomated code generation and performance enhancements for sparse tensor algebra have become essential in many real-world applications, such as quantum computing, physical simulations, computational chemistry, and machine learning. General sparse tensor algebra compilers are not always versatile enough to generate asymptotically optimal code for sparse tensor contractions. This paper shows how to generate asymptotically better schedules for complex sparse tensor expressions using kernel fission and fusion. We present generalized loop restructuring transformations to reduce asymptotic time complexity and memory footprint. Furthermore, we present an auto-scheduler that uses a partially ordered set (poset)-based cost model that uses both time and auxiliary memory complexities to prune the search space of schedules. In addition, we highlight the use of Satisfiability Module Theory (SMT) solvers in sparse auto-schedulers to approximate the Pareto frontier of better schedules to the smallest number of possible schedules, with user-defined constraints available at compile-time. Finally, we show that our auto-scheduler can select better-performing schedules and generate code for them. Our results show that the auto-scheduler provided schedules achieve orders-of-magnitude speedup compared to the code generated by the Tensor Algebra Compiler (TACO) for several computations on different real-world tensors.more » « less
-
Dias, Adhitha; Sundararajah, Kirshanthan; Saumya, Charitha; Kulkarni, Milind (, International Conference on Supercomputing)
An official website of the United States government
